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~~~ ABSTRACT

A DIFFERENTIAL FOR L-STATISTICS

Let X � X � ... � X be an ordered sample from a distribution F andln 2ri nn

c. a sequence of constants. Statistics of the form c. X. are calledin i=lin in

“linear functions of order statistics,” “L-estimators,” or simply “L-statistics.”

Various methods of generating the constants c. have been considered, including
i/n in

c. =n 1J(i/n+l)oj n~ ’J(1/n) and c~~f J(u)du for fixed “score” functions
1 (i—l)/n

• J. L-statistics of the form T = ~~ ~~~. X. can be obtained from then i=l in in

functional T(F) = JP
4(t)J(t)dt by substitution of the sai~ple d.f. F~ for F.

Under the mild assumption that J is bounded and continuous a.e. Lebesgue and

a.e. F~’ and under a tail restriction on F of the form fq(F(x))dx <

(e.g., (1(t) = [t(l_t)]~~
6, 0 < 6 < 4), it is shown that T(.) has a Frechet-

type differential . The tail restriction may be dropped if J trims the extremes.

In either case it follows that if {X.} is a sequence of independent observations

on F, then 1~(T(F )-T(F)) is asymptotically normal and obeys a law of the

iterated logarithm. Continuity of T holds under milder conditions on J and

F. This leads to strong consistency, T(Fn) 
wPl > T(F). No continuity restric-

tions are imposed on F , so that the results are apnlicable to a wide class of

distributions of interest in robust estimation. Illustration is provided by

examples including the trimmec~ mean , the smoothly trimmed mean, and approxi-

mations to the interquartile range. The asymptotic normality result is competi-

tive with one of Stigler (1974) for the closely related statistic

S = ~ ~~~. X. , obtained under stronger conditions on J but a slightlyn i= l in in

milder condition on F. ‘However, in addition to asymptotic normality of T(F~),
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the differential approach of the present paper yields characterization of

the almost sure behavior of T(F~) and lends itself to straightforward extension

to the case of dependent variables.
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1. INTRODUCTION

Let X1~ � X2~ � ... � be an ordered sample from a distribution F and

c. a sequence of constants. Statistics of the form c X. are calledin i~l in in
“linear functions of order statistics” (e.g., Shorack (1972), Stigler (1974)),

“1.-estimators” (Huber (1972)), or simply “1.-statistics”. Various methods of

generating the constants c~~ have been considered, including 
~~ 

n~~J(i/n)

or n~~J(i/n+l) and c. = f~~”1)/ J(u)du for fixed “score” functions J. By

choosing the c1~ (or J) properly, the L-estimator can be made insensitive to

outliers or “robust” with regard to long-tailed distributions. Thus 1.-estimators

have played an important role in the development of the modern theory of robust

est imation . Since their exact sampling distributions are difficult to compute

even under strict model assumptions , much work has focused upon the question

of asymptotic normality. There appear to be four main approaches: (1) Weak

convergence in connection with the empirical process, Bickel (1967) , Shorack

(1969, 1972) ; (2) Hajek’s projection method, Stigler (1969 , 1074) ; (3)

approximation of the L-estimator by sums of independent exponential r.v.’s,

Chernoff, Gastwirth, and Johns (1967); (4) Frechet differentials, Gregory (1976).

The present paper treats L-statistics of the form T~ = and

uses a differential method similar to Gregory’s, but the restrictions on the

and the underlying d.f. F are similar in spirit to Stigler (1974) who

treats the closely related statistic g . ~~~~~~~ Further, in addition

to asymptotic normality, the main theorems of Sections 4 and 5 yield strong

consistency and a law of the iterated logarithm (1.11.). ‘lore general versions

of these last two results have been given recently by Weliner (1977a), (1977b).

The L-statistics we consider may be represented in terms of a functional

defined on the space of d.f.’s. The basic functional of interest is given by

-3- 
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(1.1) T(F) = f F ’1(t)dK(t)
0

where F4(t) inf{x: F(x) ~ t} and K(t) is a right continuous function of

bounded variation on [0,1). In this paper we restrict K(t) to be absolutely
t

continuous by putting K(t) = J J(u)du , for J integrable on [0,1). Then (1.1)
0

becomes

1
(1.2) T(F) = f F4(t)J(t)dt

0’

h ’  (Note that finite linear combinations of quantiles are thus excluded . However ,

in Example (iii) of Section 4 we show how to approximate such combinat ions by
C. appropriate choices of J.) For the case that K(t) is a d.f. symmetric about

Bickel and Lehmann (1976, I and II) discuss the value of (1.1) as a measure

of location. We are allowing K(t) to represent a signed measure in order to

include a large class of scale functionals as well.

The sample d.f. F~ generated by a sample X1, ... , X~ is defined by

i n
F~ (x) = 

~ I(X~ 
� x)

jul

For estimation purposes we set T~ a T(F~) by substitution of F~ for F in (1. 1) .

This statistic can be put in a more familiar form by not ing that

f
1F~~ (t)JK(t) — r~dK(F (~))

0 -.

for any d.f. in the domain of T() (the change of variable is justified by

Lemma 12, Section 3). Then substitution of F~ for F in this last expression

yields

rF (x) 1 n i
(1.3) T(P~ ) - f xdK(F~ (x)) - f x dIJ 

TI J(u)du l Z X1~ f T ’ J(u)du ,
-~~~ -. 

~.Q _I i-i 
~!

i.e. , T(F~) I ,
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In Sections 2 and 3 some preliminaries are developed . Section 2 provides

the dofinitionsof the differential and of continuity, the basic tools to be

utilized in the sequel, and important convergence results for F~ - F. Of

• interest here are recent results by O’Reilly (1974), James (1975), and Weilner

(l977a) for weighted empirical processes. Statistical application -is provided

by Theorem 1 (strong consistency), Theorem 2 (asymptotic normality), and

Theorem 3 (1.11.). Section 3 provides a useful representation for the difference

T(F) - 1(G) and a related inequality.

In Sections 4 and 5 we will prove that under suitable restrictions on

J, F, and the sequence {X1
}, we have

(1.4) lim T(F ) = T(F) w.p 4

(1.5) ~‘~ (T(F~) - 1(F))  _!~_> N(0, 02) as n + ;

(1.6) ~~~~~~~~ 

/ii~(T (F~) - T(F)) 
= 1 v.p.’.

/2a log log n

Continuity of 1 leads to (1.4), and the existence of a differential for

T leads to (1.5) and (1.6). For proving continuity we assume that J is

bounded and integrable on [0,1]. For proving the existence of a differential

we assume that J is bounded and continuous a.e. Lebesque and a.e. F ’. In

Section 4 we further restrict J to be 0 in some neighborhood s of 0 and 1,

making T robust in the Hampel (1971) sense. Theorem 4 provides the existence

of a dif ferential in this case w .r . t .  the sup-norm 
~~~~~~~~~~ 

A corollary

yields (1.5) and (1.6) for I.I.D. r.v.’s by appeal to Theorems 2 and 3.

Theorem 5 yields continuity of I - .wr~.t. ~~ and (1.4). In Section 5

we trade the trimming condition on J for a tail restriction on F of the form

_ 
_ _  1_~ ~~

____
~__J
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fq(F (x))dx c (e.g., q(t) = (t(l_t))I~
6, 0 < 6 < ~

.) . Theorem 6 then provides

the existence of a differential w.r.t. the q-norm 1 1 ~~~ q( F) ’ essentially

defined by ‘ 1 • 1 1 q(F) ~ f)( )/q(F)fI~ . Corollaries 1 and 2 then yield (1.5)

and (1.6) in the I .I. D . case for different classes of q functions (tail

restriction~). Continuity and (1.4) are provided by Theorem 7.

Section 6 generalizes the results of Sections 4 and 5 to the functional
1

1(F) = f h(F~~(t))dK(t). In Section 7 specific comparisons are made with
0

related work of Stigler (1974), Gregory (1976), and Weilner (l977a), (l977b).

2. THE DIFFERENTIAL AND ITS STATISTICAL APPLICATIONS

Most of this section can be found in expanded form in Boos and Serfling

(1977). We begin with the definition of the differential and motivation for

its use. Lemmas 1-4 spell out the statistical properties of the differential

and Lemma 5 relates continuity of functionals to consistency of I(F~). A

discussion of specific norms follows, including Lemmas 6-11 which provide

some convergence properties of I I F~ - F f1 for these norms. Lastly, Theorems

1, 2, and 3 provide (1.4), (1.5), and (1.6) for the usual situation of I.I,(i.

r.v. ‘S.

Let I be a real-valued functional defined on a convex set F of d.f.’s.

Denot e by ~(F) the linear space generated by differences H-C of members of

F , i.e.,

V ( F ) a ( ~~: t~~~ a(H-G) , H ,G c F , a c R } .

Assume 1”(F) is equipped with a norm f J~~f, to be specified later.
DEFINITION . We say that a functional T defined on F has a differentia l

at the point F e F w.r.t. the norm ff . f f  and the set e F if there exists



a quantity T(F; A) defined on A c 0(F), which is linear in the argument A

and satisfies the condition

(2.1) u r n  T(G) - 1(F) - T(F; G-F) 
= 0 . n

+ 0 II G - F I I - —

G e  F

T(F ; A) is called the “differential.” By linearity of T(F ; A) is meant that

k k
T(F ; ~ a.A.) = 

~ 
a~T(F; A.)

i=1 i=l

for A1, . . .,  c 0(F) and real a,, . . .,  a~. Often CF = F , although sometimes

(2.1) is easier to show for special choices of CF. When mention of ‘F 15

omitted, it will be assumed that GF = F.

The intuitive content of the above definition is that 1(G) - T(F) can

be closely approximated by the differential T(F; G-F), whose linearity property

can then be exploited. An alternative statement of (2.1) is

(2.2) T(G) - T(F) = T(F; G-F) + o(~ fG-Ffj ) as I I G - F li 0, G e CF.

For statistical applications we substitute the sample d.f. F~ for C and find

that T(F~) - T(F) is approximated closely by T(F; F - F) in a stochastic
sense (to be made clear in the lemmas below). In order to examine T(F; F~_F),

recall that for a sample X1, ..., X~, the sample d.f. may be written as

F~ - n~~ ~~~~ 
where denotes the d.f. of a r.v. degenerate at x. Then,

by the linearity of the differential,

T(F ; F~_F) = T(F; 
~~

- 

~~
(c5x

_F)) = ~
- ~~T(F; ox

_F)

We assume throughout this paper that T(F; 6
~
_F) is well-defined and measurable

j .  
-~~~~~~~~~ -- --~~~~~~-“ ~~~~~ -—--



w.r.t. the probability space induced by X. For convenience we set T(F; 6k
_F) =

T[F; xl and note that T[F; xl = Ic
~T F (x) ,  the influence curve of T at F (see

Hampel (1974)). (In Boos and Serfling (1977), T[F; x] = T(F; 6w
_F) -

JT(F; 6 -F)dF(x); this latter expectation is 0 for L-statistics.) Thus we

see that T(F; Fe
_F) reduces to an average of identically distributed r.v.’s,

T[F; XV ] , which are independent if the original sample X1, . . .,  X1~ consists of

independent r.v. ‘s.

Before pursuing the statistical applications of the differential, we form-
4

ulate the related concept of continuity of functionals.

DEFINITION. The functional T is said to be continuous at F w.r.t.

~~ and CF if

(2.3) lim T(G) = T(F)
Hc-FII + 0
G c CF

In order to facilitate the statement of a number of short lemmas, we list

here a group of conditions. The sample d.f. F~ will always be assumed to be

generated by a sample (not necessarily independent) X1, ..., X~ from a dis-

tribution F.

CONDITIONS.

(2.4) T has a differential at F w.r.t. f f • f f  and GF;

(2.5) P{F e CF. all n sufficiently large} = 1;

(2.6) lim HF~-P l I  = 0 w.p.l

(2.7) /ii’f IFn_ FI = O~(l) as n 
-

~~

-8-



.•-
~~~~

V~ ] J F  - F J f
(2.8) n 

= 0(1) as n -
~
. w.p.l

/log log n

(2.9) EF{T[F;X]} = 0, Var~{T[F;XJ} = ~
2 

> 0;

(2.10) X1, ..., X are independent and identically distributed with d.f. F .

RaMARKS. (i) For some applicati’rns, conditions (2.5) and (2.6) may be

replaced by weaker versions using convergence in probability. (ii) Condition

(2.7) is equivalent to the condition that the sequence of distributions

corresponding to /~]IF~_ Ff f is tight. (iii) Conditions (2.9) and (2.10)

imply the classical central limit theorem

(2.11) p— 
~ T[F;X.J ~L-D N(0,~

2) as n
/~
‘j l 1

and the classical law of the i~erated logarithm

~ T[F;X.]

(2.12) iT~ 
1.1 

= 1 w.p.l. 0
n-~ / 2i2o n log log n

The following l emmas provide the foundation for using the differential and

the related concept of continuity in statistics. The proofs are trivial and

will be ommitted for all but Lemma 4.

LEr~IA 1. If (2.4), (2.5), and (2.6) hold, then

T(F ) - T(F) - T(F;F -F)
u r n  = 0 w.p.1.
n-.~ Il F~-F lI

or equival ent ly

T(F~) - 1(F) ~ ~~
T[F;X

~
] + o (IIF~-FJI ) as n + w.p.1.

.19,.

_ _ _  — -- . --- -•-~~~~~~~-~~~~~~~ •~~~~~~~~— - -•- -~-- - - -~~-•- — — -—— —
~~~~~~~~~ •



LE IMA 2. If (2.4), (2.5), and (2.7) ho ld, then

J~(T(F ) - 1(F) - T(F;F -F)) .2_> 0 as n -~

LET~IA 3. If (2.4), (2.5), (2.7), (2.9), and (2.10) hold, then

v’~(T(F ) - T(F)) 
L~> N(0,o2) as n -.

(Note that conditions (2.~~and (2.10) are used here only to get (2.11).)

LE-r~A 4. If (2.4), (2.5), (2.8), (2.9), and (2.10) ho ld, then

/~(T(F ) - T(F))
_ _ _ _ _ _ _ _ _  

= 1  w.p.1
n-~ 1 2  -i’2a log log n

(Note that condition (2.10) is needed here only to get (2.12).)

PROOF. Write 1(F ) - T(F) as

T(F ) - T(F) [T(F ) - T(F) - T(F;F -F)) + T(F;F -F).

By (2.12),

,‘~T(F;F -F) —
lim 

___________  
= 1 w.p.l.

n-~ / 212a log log n

Thus it suffices to show that

• 
~ 

/~[T(F)- T(F) - T(F;F -F)] 
= 0 ~~~~~

/2a log log n

Write this last expression as

T(F ) - T(F) - T(F;F -F) ~~~~~~

L 

ff F - F ff 2n 12a log log n

-10- 



The first term converges to 0 w.p.l by Lemma 1, and the second term is

bounded w.p.l by (2.8). 0 -

LE 1M~ 5. If (2.3), (2.5), and (2.6) hold, then

lim 1(F ) = 1(F) w.p.1

The general statistical application of the differential and of continuity

is well characterized by the preceding five lemmas. It should be clear how to

extend Lemmas 3 and 4 to the case of dependent variables. After presenting a

class of norms which satisfy (2.6) - (2.8), we will apply the above general

results to get Theorems 1, 2, and 3 which provide strong consistency, asymptotic

normality, and an LIL for T(Fn) in the case of I.I.D. r.v.’s.

The statistical value of the theory developed in this section depends

heavily on the choice of norm I I • . In fact, the norm must serve two some-

what conflicting purposes. For satisfaction of (2.1) of the definition of

the differential, we would like a relatively “large” norm, whereas conditions

(2.6)-(2.8) are most easily satisfied for “small” norms. We now introduce

a class of norms for which a number of useful stochastic results are available.

Let F be a fixed d.f. and let the closure of (x1,x2) be the smallest

interval (possibly infinite) containing the support SF of F. Let F =

(d.f. C: SG
cSF}, and let V(F) be the companion linear space of differences.

For a bounded positive function q on (0,1), we define

(2.13) I I A I I q(F) x~ <~~~~
i)Tf ’ A c 0(F).

For q( t)~ 1 we get the usual sup-norm, h A I L  a sup ,,<~<j A( x ) I ,  since on 0(F)

we have sup~~< <  I A(x) f SUP

-11-
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The important choices of q function are those for which q(t) -‘. 0 as t + 0

and 1. They produce nonequivalent norms which are “larger” than f I .  I I ,’ for

(2.14) f l A I L  � I I q f  I I  J A I l  (F) ’ A e 0(F).

The potential use of such norms in verifying (2.1) can be seen from the

following inequality. Let 5F = (_a~,~~) and J~ q(F(x)dx c •. Then

~J A(x ) dx~ = 
J[q~~~ )j~)q(F(x))dx~

� I IA I ‘q(F) ’ 
q(F (x))dx

A similar inequality will be employed in Section S to show that L-functionals

have a differential w.r.t.

Even though ) f • I ) ,, can be viewed as a member of the larger class of q-norms,

it is advantageous to consider hI hL, by itself. Historically, results related

to (2.6)-(2.8) for )).~f~ generally preceded the results for 11 ’ 1 1 q(F)~ 
For

sequences of independent and identically distributed r.v.’s, condition (2.6)

with 
~J ’~f a ff .fl is just the Glivenko-Cantelli Theorem. The conclusion

of the following lemma implies (2.7) for ) f f f  I~lL .
LE~?~A 6. Let (x i } be a sequence of independen t observa tions on a non-

degenerate distribution F. Then

L(2.15) ~cII~ - F hi —
v Z as n +n F

where 1F vs positive w.p.1

The proof of (2.15) for the case of F continuous was first given by

IColmogorov (1933). The distribution of ZF was given explicitly and seen not

-12- 
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to depend on F. Extension to the case of F having finitely many discontinuities and

not being purely atomic was obtained by Schmid (1958). Here the distribution of

was given explicitly; it depends upon F in the case of discontinuities. The

general case is treated in Billingsley (1968), Section 16. See Boos and Serfling

(1977) for f~frtber- discussion.

r 
The conclusion of the next lemma yields (2.8) for ~~I ( II IL.
LE t IA 7. Let { X .  } be a sequence of independent observations on a dietri-

1

bution F. Then

(2.16) 
_________ 

= sup /2F(x)(1-F (x)) w.p . 1
~~ r’log log n -~<x<~

The proof of (2.16) in the case of F continuous was given by Chung (1949).

Extension to the case of F having discontinuities is due to Richter (1974).

Now we turn to the norm 11
~~~q(F) ~tost of the results in the literature

concerning II F n_ F II q(F) are for F continuous. The following lemma shows how to

use such results for the purpose of verifying (2.6)-(2.8) for arbitrary F. Let

H denote the d.f. of uniform (0,1) r .v. ’s.

LE~ 1A 8. Let {X 1
} be a sequence of independent r .v. ‘a on a given probability

space, having distribution F. Then a sequence { U~) of independent uniform

(0,1) r .v. ‘a, with sanrple d . f.  II
~ 

can be constructed such that

(2.17) II F n~F I f q(F) � I I H n~H I I q (H) w.p.1 , all n

PROOF. For the given sequence {X1}, defined on an arbitrary probability

space , it is possible by means of randomization to construct uniform (0,1)

r.v.’s {U.} such that

X1 F~~(tJ1) w.p.l

-13-
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This is well-known, but a construction is provided in Boos (1977). Let Hn be

the sample d.f. of the constructed sequence {U~} and F~ the sample d.f. of the

sequence (X1}. Then

Fn(X) = H~(F(X)) w.p.l

and

F~ (x) - F(x) H (F (x)) - F( x )
sup = supq(F (x)) x1<x<x 2 

q(F (x) )

H Ct) - 11(t)
• � SU~ Ct) w.p.1q

with equality if F is continuous. 0

The bound (2.17) aids us in the following way. Suppose that condition

(2.6), (2.7), or (2.8) holds for sequences of independent uniform (0,1) r.v.’s.

Then for arbitrary sequences {X~}, the conclusion of the lemma allows us to

bound the quantity of interest, say If F n_ FH q(F) or 
)/
~] I F n _ F l I q(F )~ etc . , by

a quantity, hI H
fl

_ H Il q(H) or /
~
i
~t IHn

_ H hI q (H)~ 
which satisfies the condition in

quest ion.

We are now ready to use recent results relating to (2.6)-(2.8). Lemmas

9, 10, and 11 are taken from Weliner (1977a), O’1~eilly (1974), and James (1975)

respectively. We attempt to preserve each author’s notation. Each lemma is

followed by a corollary which provides the proper extension for our application.

Let ~f(+) denote the set of all nonnegative, nondecreasing, continuous

functions on [0,1) for which f(l/h(t))dt < 
~~ . Let H denote the set of all h

such that h(t) a h(l-t) = i~(t) for ost4. and some ~~in 11 (t) .

LEIMA 9. (Weliner). Let {iJ~} be a sequence of independent uniform (0 , 1)

r.v. ‘a. Let h t if .  Then

-14-
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F (t)-t
(2.18) u r n  sup = 0 w.p .1

n-~~ O�t~l

It is apparent that the conclusion of Lemma 9 can be extended to Q1 = {q: q is

bounded on (0,1] and q(t) � h(t) Vt c [0,1], some h c H}. The following

corollaryfollows immediately from Lemmas 8 and 9.

COROLLARY. Let {X
~

} be a sequence of independent r.v. ‘a having distribution

F (not necessarily continuous). Let q £ Q1. Then

(2.19) lim IF fl
_ F II q(F) = 0 w.p.1

Characterization of condition (2.7) for Ii’ II = I H I q (p) is essentially

provided by the following weak convergence result, found as Theorem 2 in O’Reilly

(1974). Let D[0,1J be the space of real-valued functions on [0,1] having only

jump discontinuities. Let ~q(X~Y) = sup0~~~1 (x (t)-y(t))/c(t)I. Since (D~Pq)

is not separable, O’Reilly uses “weak convergence” in the sense of Definition

2.1 of Pyke and Shorack (1968). Let W0(t) be a “tied-down” Wiener process (or

“Brownian bridge”).

LE’I~IA 10. (O’Reilly). Let q be a continuous, nonnegative function on

[0,1], bounded avxzy from zero on [c&,1-a) for some occi4, nondecreaein.g (non-

increasing) on [0,a] ([1-a , l J ) .  Let {tJ
~
} be a sequence of independent uniform

(0 ,1] r.v. ‘a, and define U~(t) = ~‘i~(F~(t)-t). Then

2
-~h1

(2.20) e 
t dt < , for all c > 0, i l , 2

0

is both a necessary and sufficient condition for the weak convergence of U~
to W0 in (D~~q where h1(t) = t4q(t) and h2(t) = t~~q(l-t).

-15-
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Let Q
2 
be the set of q functions satisfying the conditions of Lemma 10

including (2.20). Let 93 = (q: q is bounded on [0,1] and q(t) �

q*(t) Vte[0,l], some q*(t) £ The following corollary follows from the

proof of O1Reilly ’s Theorem 2.

COROLLARY . Let {X .  I be a sequence of independent r.v. ‘a having distribution
1

F (not necessarily continuous). Let qcQ3. Then

(2.21) /i
~IIF n

_FU q(F) = as n 4. .

PROOF. Following the proof of O’Reilly ’s Theorem 2, let tf~ and W
0 

be

versions of and W0 defined on a common probability space such that

sup0�~�1
fiT
~
(t)_W

0(t)I ‘‘~~~ > 0. O’Reilly shows that

iT (t)-W(t)n 0 Dsup —~—.0 asn +~~~.0�t�l ~~~~

Thus

tT~(t) L W0(t)
SU~ (t) ~~~ sup (t) as n +q O~t�l 

q

Moreover , sup0~~~1lW0(t)/q(t)I has a (finite) distribution and by the bound

given in Lemma 8, (2.21) follows. 0

The next result, due to James (1975), characterizes (2.8) for ~~ 
a

In accord with James ’ notation, we let W be the set of positive real-valued

functions w on [0,1] such tha t for some 0<64, t~w(t) is monotone increasing on

(0,6], (l-t)~w(t) is monotone decreasing on [1-6 ,1), and w is bounded:on- [6 1.6].

Here w plays the role of l/q and values at 0 and 1 are arbitrary.

LE!+IA 11. (James). L~5t EJ (t) be defined as in Len,rt~ 10. Let w c IV. If

-16- 
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(2.22) W (t) 
1 dt <

~ 
log log

then

U (t)w(t).
(2.23) 13i sup 

___________ 
= sup [t(l-t)] w(t) w.p.1 .

- 
n9~ O�t�l 1~Tog log n 0�t�l

Conversely, if (2.22) diverges, then the l.h.s. of (2.23) is .co w.p.1.

Let = {q :  q=1/w . “c” and w sntisfies (2.22)) ~tnd = fq :q is bounded on [0,1]

~~~ r q(t) � q*(t) Yt~(o,1), sore q*(t) C ~~~~}. Th~ ~~1.1~winr coro11~.ry is immediate

from L~r~iias ~ and 11.

C’Y~OLLARY . Let (X ~} be a sequ.?vtce oy ‘cvLde’,cndent r .~’; a ‘zaving distribution F
(~zot neoessari~y continuous). Let qcQ 5.  Then there exists a constant M -+ such that

1~((F - Fl i

(2.24) 1jn~ 
n � ~4 w.p.1

n-’~ ilog log n

EXNIPLE. For any 0 < <

q(t) = (t(1_t))~~
6l

belongs to both Q2 and O~ (and q
2(t) belongs to Q1). Gaenssler and Stute (1976)

note that for q(t) (t(l-t))~ and Un(t) defined as in Lemma 10, we have

(2.25) sup 
U~(t) -- p -; as n + 

. -i
0<t<l (t(l-t))

and

U (t)
(2.26) sup ______________ 

_2_ i as n
O<t<l 12t (l-t) log log n

-17- 
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However, the last statement of Lemma 11 tells us that the l.h.s. of (2.26) is

4~ w.p.l. Thus a “weak” form of (2.8) holds even though (2.7) and (2.8) do

not hold. 0

We conclude this section with three theorems which combine the norm theory

just discussed with Lemmas 3-5.

THEOREM 1. Suppose that Tie continuous at F w.r.t. JI .~J,,, (or w.r.t.
q £ Q1) and GF .  If (2.5) and (2.10) hold, then

(2.27) lim T(F~) = T(F) w.p.1
n-p~

THEOREH 2. Suppose that T has a differential at F w.r.t. I H I CO

(or w.r.t. ‘‘ ‘‘q (F) ’ q c Q3) and GF. If (2.5), (2.9), and (2.10) hold, then

(2.28) /ii
~
(T (Fn) - 1(F)) _!_

~ N(0,o2) as n -~

ThEOREM 3. Suppose that T has a differential at F w.r. t. II’ l  L 
(or

w.r.t. ‘ 1 • 11 q(F)’ q c Q5) and GF . If (2 .5 ) ,  (2 .9) , and (2.10) hold, then

c(T(F ) - T(F))
(2.29) u r n  = 1 ~.v.1

fl4~ /2f2o log log n

3. FURTHER P RELI M INA RIES

t
Let J be integrable on [0,1]. Then K(t) a f J(u)du is absolutely continuous

0
and K’(t) J(t) wherever J(t) is continuous . For any d.f. F, K(F(x)) is a

right continuous function of bounded variation . If J is nonnegative and

J J(u)du = 1, then K(t) and K(F(x)) are d.f.’s.

The following lemmas will be needed in the proofs of Theorems 4-7. Lemmas

12 and 13 allow the difference, T(F) - 1(G), to be written in a convenient form.

Lemma 14 establishes a simple inequality. Let be the set of all 3 integrable

-18-
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on 10,1]. For J £ let F3 = (F: fF
4(t)J(t)dt~ <

LE~ 1A 12. If F c F3, then

1
(3.1) f F 1(t)dK (t) = f xdK(F(x))

0 -~~

PROOF. Basically we need to justify the substitution t=F(x). Let I~ = (a
~
,b
~
)

be the intervals in [0,1] such that F 1(a.,b .] = x~, where x. is a jump point of

F and F(x .) = b. and F(x.-) = a1. Then

1
(3.2) f F~~(t)dK(t) = 

~ 
f F4(t)dK(t) + f F~~(t)dK(t)0 j=l I. [0,11—UI .

1 1.

L ‘

Let SF be the support of F and A = {x1,x2,. . .1 the set of jump points of F. Then

(3.3) J xdk(F(x)) = I xdK (F(x)) = 
~ f xdk (F (x)) + f xdK(F(x))

-
~~~ S~ 1=1 (x .} SF A

‘~e first show that

(3.4) 
~ 

f F4(t)IK(t) a 
~ 

f xdl((F(x))
i=l I~ i=l {x1

)

Consider the i-th integral of the l.h.s. of (3.4) .  “e have

f F~~(t)dK(t) = x. f dK(t) = x.[1C (b.) -
Ii (a~~b~]

since F4(t) x. for t c (a
~
,bi]. The i-th integral of the r.h.s. of (3.4) is

f xdk(F (x)) a x~[K(F(x.)) - K(F(x.-)))
{ X~~}

= X~r K(b~) -

-19-
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by definition of the Stieltjes integral and by substitution of F(x.) = b1,

F(x 1-) a1
. Thus we have term by term equality in (3.4). Now to justify

(3.5) f F4(t)dK(t) = f xdK(F(x))
[0,lJ-UI~ SF

_A

we need only note that t=F(x) is a one-to-one mapping of SF~
A onto ~0,1)-UI1

and apply a general change of variable lemma (e.g., Dunford and Schwartz , Vol 1,

p. 182). Equalities (3.2), (3.3), (3.4), and (3.5) give (3.1). 0

Related to the preceding lemma is the familiar identity,

1f F~~(t)J(t)dt = fxJ (F(x))dF (x),
0 -

~~~

which is valid for all continuous F, but not however, for all discontinuous F.

LEi44A 13. If F1, F2 £ F3, then

(3.6) f[K(F1(x)) 
- K(?2(x))]dx = fxdK (F2(x)) 

- fxdx(F 1 (x)).
—~~ _w —~~

PROOF. This is a trivial application of integration by parts. The

result is well-known when K(t) is a d.f. (e.g., Rao (1973), p. 95 (correcting

a misprint)). 0

Combining Lemmas 12 and 13, we obtain,

(3.7) 1(F) - T(G) = f [K(G (x) )  - K(F(x))]dx .

The next result relates to the quantity ~~~ defined for d.f.’s ~ and

Pb y

VG F  G (x)-~(x)� 0

-20-



where

VG F (x) = K(G (x)) - IC(F(x)) - (G(x) - F(x))J(F(x))

LEMMA 14. Suppose that J c is bounded. Then

VG,F � 2HJIL

PROOF .

G (x)
IK(G (x)) - K(F(x))J � f J(u)du � G(x) - F(x) I H J I I

F(x)

Thus, for ((x) ~ F(x),

VG F (x) IG(x) - F(x)f I I J t I ,~ 
+ IG (x) - F(x)I ~J(x)~

G(x)-F(x) ~

� 2~~Jfl~ . o

4. ROBUST L-FUNCTIONALS

In this section we restrict J to be bounded, continuous a.e. Lebesgue and

a.e. F ’, and trin~ned so that 3(u) = 0 near 0 and 1. Specifically this

trimming is of the form

3(u) = 0 u £ [0,t1) U (t2,l]

for 0<t1<t2<l. As noted in Section 1, the functionals generated by these special

J functions are generally viewed as robust (for justification, see Bickel and

Lehmann (1975), I., p. 1054). i4oreover , by separating this subclass from

the more general functionals of the next section, we will be able to prove

the existence of the differential under a minimum of conditions and with

respect to the simple sup-norm, I I F n_ F II a, = supIF~ (x)-F (x)I.

-21-
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Let F denote a fixed underlying d.f., and define t1 and t2 as above.

Note that we may take F=GF = (all d.f.’s}.

THEOREM 4. Suppose that

(4.1) 3 is bounded and continuous a.e. Lebesgue and a.e. F ’1 ;

(4.2) J(u) = 0 for u c [O,t1) u (t2,l].

Then, for 1(F) = JF
1(t)J(t)dt, the differential of T () at F w.r.t. I lL.

is given by

(4,3) T(F; L~) = -f~(x)J(F (x))dx.

REMARKS. (i) Since T(F;~) is clearly linear in ~~, the conclusion may

be restated via (2.2) as

(4.4) T(G) - T(F) - f(F(x) - G(x))J(F(x))dx = o(I  ~G-F~ I )  as IG-F I f 
+ 0.

(ii) If F has bounded support, then (4.2) is not required .

(iii) The “a.e. F~~” statement in (4.1) guarantees that J is continuous

where F is flat (points F(x) such that x is not in the support of F). When

J is continuous except at the trimming points t1 and t2, this requirement

reduces to the assumption that t
1 
and t2 correspond to unique quantiles of F. 0

PROOF OF THEOREM 4. Since T(F;A) is linear, we need only show (4.4).

By (3.7) the l.h.s. of (4.4) can be written as

-f[K(G(x)) - K(F(x)) - (G (x)-F (x))J(F(x))ldx = _JVG,F(x)dx

Let (a,b) be such that G(a) < t1, F(a) < t1, G(b) > t2, F(h) > t2. Then ,

since J(F(x)) and K(G(x)) - K(F(x)) are 0 outside (a b),

--



JVG F (x)dx = IVG F (x) dx

Let B = {x: F(x) is a discontinuity point of J} and define

VG F~~WG F (x) = G(x)-F(x) if G (x) � F (x)

= 0 if G(x) = F(x)

Since B is a Lebesgue-null set (using the fact that J is continuous a.e.

-lF ),we have

If”G F~~~1
~CI 

= f VG ~(~~l~c
(a,b)-B

I f (G(x) - F(x))(WG ~~~~~~~(a,b)-B

� I IG-FIL f IW G F~’~~’~~(a,b)-B

By definition of the derivative

lim 
~ F(x) 0 V x c (a,b) - B

I IG - F l L4 0

because K’(F(x) = J(F(x)) on (a,b) - B. sincelwG F cx)
I 

� � 2~~Jfl by Lemma

14, we can justify interchange of the operations of limit and integration

through use of the theorem on bounded convergence for a finite interval . That is,

IIV G F~~~~~’lirn ‘ — u r n  f W (x) dx
IIG- FlI~,. + 0 I IG-FIL. IIG-F IL. .0  (a,b)-B

a ith W~ (x) ~X 0. 0
(a ,b)-B I !~-~IL ~,. 0 

F
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Asymptotic normality and an LIL follow easily from Theorems 2 , 3, and 4.

Note that for the differential defined in Theorem 4, we have

(4.5) T[F;xJ = T(F;~~-F) = f[F(t)-I(x�t)]J(F(t))dt.

Thus

(4.6) EF{T[F;X]} = 0 ,

and

(4.7) ~2 = varF{T[F;x]} = 1  fJ(F(s))J(F(t))(F(min(s,t) --F(s)F(t))dsdt.

COROLLARY. Suppc~se that J and F satisfy (4.1) and (4.2) and that ~
2 

> o.

Let {X . }  be a sequence of independent r .v~ ‘s having distri bution F. Then

(4.8) &(T(F )-T(F)) ~~~~~~ N (D,ci2 ) as n +

and

/i~(T(F )-T(F))(4.9) lim = 1 w.p.1
‘~~~ ‘ 2/2~ log log n

PROOF. Condition (2.9) is given by (4.6) and the assumption that > 0.

Condition (2.5) is satisfied since GF in this case is the set of all d.f.’s.

Condition (2.10) holds by hypothesis and Theorem 4 provides the existence of

the differential . Thus the conditions of Theorems 2 and 3 are satisfied. El

We could formulate the above corollary for dependent variables also .

Specifically, for (4.8), we could replace the independence assumption by the

assumption that the {X1
} satisfy (2.11) and (2.7) wi th J J ~H = t J .H . For

(4.9), we would need (2.12) and (2.8) with I~ I I = I •I

-24- 
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Note that (4.9) yields strong consistency of T(F~). However, by appeal

to continuity of T, we can sli ghtly relax (4.1).

THEORE’I 5. Suppose that J is integrable on [ 0 ,1] and bounded and that

(4.2) hoids. Then T is c07-ztinuous at F w.r.t. 
~~~~~~~ 

Further, if {X~} is

a sequence of independent r . v. ‘s having distribution F, then

(4.10) him T(F ) = T(F) w.p.1

PROOF. Let (a,b) be as in the proof of Theorem 4. Then

JT(G)-T(F)$ = If[K(G(x)) - X(F(x))]~ xf

~b-a $ 1 1 3 11 , IIG - F I I 0,.

Thus T is continuous at F w.r.t. 
~~~~~~~~ 

and an appeal to Theorem 1 yields

(4.10). 0

EXAMPLES. (1) The trimmed mean.

J( t )  = 
~~

— —

~
--—.----- c~1�t�c&2

= 0 o.w.

1 3(t)
l—a 1-a2

I I
_ _ _ _  

I 
_ _ _ _ _ _

0 c~ a

(ii) The noothly trimmed mean (from Stigler (1973)). Let ~~~~~~ = a

and c be a constant.

-25-
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‘I

c, c z � t � l - a

= [i_~_tJ [~.EJ. 1-a � t � i_
~
.

= 0, o.w.

- 
J(t)

/
/

0 a a 1-a l.a 1
2 2

(iii) Consider the interquartile range, F~~(3/4);F
’(l/4) 

. This functional

is obtained from (1.1) by letting K(t) p1acemass~~- at F
4(3/4) and

F’~~(l/4). Although Theorem 4 doesn ’t apply, directly to discrete K(t) we can

approximate F 
1(3/4)-F ‘(l/4) by a functional with absolutely continuous K(t).

Let

J(t) = {_ )t . [L !~J

= [..!~.Jt _ 
[l+:~

J

I 3-46 3 3= 
;
~~

.t _  
8~~

_____ ~~~~~~~— - - —-- - - -  - - —--—
~~



- — ---

~

- -.

~~~~ 
_ _ _ _  

-

~~~

-

~

------ —---- ---- -- -

.-- -- 

-

I J( t)
6 /\

_ _  / \
~~1 1 3

-

~~~

The area within each spike is ~~
.. Note that for this functional as well as for

the smoothly trimmed mean, 3 is continuous everywhere. Thus Theorem 4 applies

to these functionals for any d.f. F.

5. GENERAL L-FUNCTIONALS

In this section we remove the trimming restriction on J. In order to

deal with the weight placed on the extremes of F, we will use the q-norms

introduced in Section 2. Let

F = (F: IfF~~(t)J(t)dt I < ~} ahd GF = (G : G c F and SG C SF},

where SF is the support of F. Let q be a bounded positive function on (0,1).

ThEORE~’1 6. Suppose that 3, q, arid F c F satisfy (4.1) arid

(5.1) fq(F(x))dx <

Then the differential of T(F) = fF
4(t)J(t)dt at F w.r.t. 

~~‘‘‘q(F) 
and 6F

is given by (4.3).

REMARKS. Condition (5.1) governs the tails of F. For q(t) = [t (l_t)]~~~l,

(5.1) becomes

(5.2) f(F(x)(1_F(x)))~~
61dx <

-27- 

---- - - - -- -- - --- - - -— -~~~~~~~~~~~~~~~~~~~ --~~~~~~~~ ~~- —-~~~~- - - --- — — -~~~~~~ -~~~~~-- - - -~~~~~~



~~~~~~~~~~~~~
-
~~

-- --~~: ~~~~~~~~~~ =~~~~~~~~=.—
~

Stigler f1974, p. 685) notes that f(F(x)(1-F(x)))~dx < is almost the same as

the existence of a finite 2nd movement . 13

PROOF OF THEOREM 6. We must show fVc ~~~~~ 
= O( II G_ F II q (F)) as

II G _ F II q(F) 0 G c GF. ~Jefine B as in the proof of Theorem 4 and let the closure of

(x 1, x.2) bc the smallest interval (possibly infinite) containing S~. Then

for G c GF we have

~~~~~~~~~ 
= 

Lx ~ )_B
(
~ F I

1’ 2

= 
t (x1,~2)B

t q(p(~) 
) [WG F (x)J q(F(x))dx j

- 

~ ll G - F II ~~~ x -B 
IWr~F

(X)
I 
q(F(x))dx.

Once again we have only to show that the interchange of limit and inte-

gration is valid , since

lim l~!G F~’~~1 0 V x c(x1,x2) 
- B.

HG_ F l t q(F)+O

G€G~

(Recall that for G £ GF, f((x)_ F(x) I�l$G_ FII 0,� II q I J 0,JI G_ F fI q(p)Yx.) In this

case we appeal to dominated convergence by way of Lemma 14. That is, by

Lemma 14,

IW~~~(x)Iq(F(x)) � V~~~q(F(x)) ~ 2HJft~ q(F(x)),

and the r.h.s. is integrable by (5.1). Thus for G c (i
F, we have

-28-
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IfV~ F ’
~~lim •— ‘ � lim f 1W (x)~q(F (x))d x

- 

II G _ F lI q(F)+0 II G_ P Il q(F) II G _ F II q(F) +O (x1,x2)-R

= f u r n  IWG ~~~~~~~~~~~~ 
a 0. 0

(x l,x2)_B I I G _ F I I q(F)
+0 ‘

Note that unbounded J’5 could be allowed if the above interchange of

operations could be justified in such a situation. Asymptotic normality

and an LIL are provided by the following corollary.

COROLLARY. Suppose that ~
2 defined by (4.7) is finite and positive. Let

k .
{X

~
) be a sequence of independent r.v. ‘a having distribution F. rf q c Q3

and 3 and F £ F satisfzi (4.1) ctnd (5.1), then (4 .8 )  holds. If q c Q5 and

3 and ~ C F i~atisfy 
(4.1) and (5.1), then (4.9) holds.

The following analogue of Theorem S gives continuity of T and strong

consistency of T(F~).

THEOREM 7. Let q c Q1. Suppose that J is integrable on [0,11 and

bounded and that (5.1) holds. Then T is continuous at F w.r.t. Ill 1 q (F)
Further , if (x ~ } i8 a sequence of independent r. v. ‘a having distribution F,

then (4.10) holds.

PROOF.

IT(G)-T(F)I = I I E K G (x ) ) -K (F (x)) ]dx l

‘ I I J I L JIG(x)-F(x)I dx

~ 1I J IL l IG~F II q(F) fq(F(x))dx . 0

EXAMPLES. (i) The mean , J(t)fl. In this case Lemma 12 yields the

familiar identity

1f F 1 (t)dt = f xdF (x). 

_  _  j
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(ii) Gini ’s mean difference, J(t) = t -

(iii) A location estimator suggested by Bickel (1973), J(t) = 6t(l-t).

6. EXTENSION TO A LARGER CLASS OF L-FUNCTIONALS

Some authors consider the slightly more general statistic ~~~1c. h(X~~)

(e.g. Chernoff, Gastwirth, and Johns(1967)). Similarly, our functional is

- - : 1
(6.1) 1(F) = f h(F ’1(t))dK(t)

0

Since h(x) = x is commonly the function used in applications, attention has

been confined to this case in Sections 3-5. However, it is easy to extend

the results of those sections to T defined by (6.1). Let fl~ be the set of

continuous functions h defined on (-o , )  such that h = h~ - h for monotone

increasing functions h~ and h .  For h c U1 let Fh = (F: IfhcF (t))dKtl <

First we give without proof the analogues to Lemmas 12 and 13.

LEMI~A 12* . If F c Fh, then

1 0,

f h(F~~(t))dK(t) = 5 h(x)dK(F(x)).
0

LE-IIIA 13*. If F1,F2 c F 1 ,  then

f(K(F~x))-K(F2(x)))dh(x) fh (x)dK(F2(x)) 
- fh (x)dK(F 1

(x)) .

Let be the measure corresponding to + h and let B be defined as

in the proof of Theorem 4. The following are analogues to Theorems 4 and 6.

We omit the proofs as well as the analogues to Theorems S and 7.

THEOREM 4~* Suppose that J, h, and F c Fh satisfy (4.2) and

(6.2) J is bounded and continuous a.e. Uh and uh(B) a 0.
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Then I defined by (6.1) has a differential at F w.r.t. 
~

. $ J ,, giv~in by

(6.3) T(F;A) = —f~(x)J(F (x))cih (x).

THEOREM 6.* Suppose that J , h, q, and F £ Fh satisfy (6.2) and

(6.4) lfq(F (x))dh(x)l -c ~~.

Then T defined by (6.1) has a differential at F w.r.t. I 1 1  ‘q (F) ~~~~

G
F 

= (G: G £ F
h and SG C sF} given by (6.3).

Bickel and Lehmann (1976 , III)  discuss the functional

1 1
(6.5) -(F) = ~f (F _ 1 (tn adK (t )la ,

L0~~~ j

“ihere F denotes the distribution of lX -~l when X has distribution F , u is

a ~~ constant, a > 0, and K(t) is a d.f. on (0,1). As a functional of

F, (6.5) is not am~nab1e to our methods. However, if we let T(F)  = T(F~)~

a functional of F , it is easy to see that [T(F~)}a has the appropriate form,

with h(x) = ~
a Then , assuming the conditions of Theorem 4* (or Theorem 6*),

we have that the differential of [T(.)]° at F~ w.r.t. 1 . 11 ,, (or w.r.t.
and GF ) is given by

U

(6.6) T(F ;~) 
- _f~ (x)J(F~ (x))d (xa)

Since we really want the differential of T(.) rather than the differential

of (1(.)]
a, the following “chain rule” is required.

LEMMA 15 . Let f(x ) be a real-valued function , f: R-~’R, with a derivative

at x=T (F), f’(T(F)). Suppose further that the functional T(.) has a differ-

entia l at F w.r.t. 
~~~~~~~~ 

and ‘~~~, given by T(F; G-F), and that T(G) - 1(F) is
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O(JIG-FII ) as IIG-FIF .o. Then the composite functional S(s) = f(T(~)) has a

differential w.r t. II ‘ II and GF given by

(6.7) S(F;t~) f’(T(F))T(F ;~).

- s 
PROOF. Trivial.

We apply this lemma with f(x) = xl~’
U, so that f’(x) = (x 1

~~
4)/a. Combining

(6.6) and (6.7), we obtain

[T (F )] 1_ cx

T(F
~
;G_F

~ 
= . I (F

u
(x)_G (x))J(F

u
(x)) d (xa) .

EXAIIPLE. Let (u,a2) be the mean and variance of F, a=2, and K(t)at.

-~~ 
- Then T(F) is the standard deviation a of F, and the differential is

- 

~~(F (x)-G (x))d(x
2) 

~~x
2d(G(x)-F (x))

(6.8) T(F
~
;G_F

~
) = 21(F ) = 2T (F )

For a sample X1,..., X of independent r.v. ’s with distribution F, let

and Fun be the sample d.f. formed from the Y1 ’s. Then substitution

of G2F
Un in (6.8) yields

fx
2d(F (x)-F (x)) 1 ~

‘

T(F ;F -F ) = — U 
= — ______

U un ii ~a n i=l 2a

Since E(Y~
2
~a

2
) = 0, and E(Y1

2-ci2)2 E(X-ii)4 - ~~~~~ the centra l limit theorem

yields (via Lemma 2) that

- a) ._L> 
N [~~ 

E(x ;U
~

4 _a
4Jas n -

~~
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This last result could have been anticipated since T(F~~) turns out to be the

usual estimator of a:

T(F ) = [f x2
dF 

~~~~~ 
= ~ S x

2d(I(-x�X .-~�x))]~
0 i=l O

= F~ ~~(x~-u) 2 ]~ .

7. CONCLUSIONS AND COMPARISONS

Stigler (1974) provides good motivation for the use of L-statistics

which are generated by smooth weight functions 3. One inherent value of

these statistics is that the theorems justifying their use (asymptotic

normality, etc.) place the force of the restricting conditions on 3 (over

which we have control) rather than on F, which is often only partially known.

Thus, practicing statisticians can actually verify , rather than assume, most

of the needed hypotheses. From consideration of counterexamples, it appears

that 3 continuous a.e. F 1 is essentially a necessary condition for asymptotic

normality (c.f. Stigler (1974), Section 5.6). Requiring 3 to be bounded is

not very restrictive, since in most situations, unbounded 3 functions would

produce notoriously nonrobust estimators. Hence, 3 bounded and continuous

a.e. F~’ is a natural restriction which we and Stigler (1974 ) have in common.

The additional requirement that J be continuous a.e. Lebesgue is necessary

for our Theorems 4 and 6 and Stigler need s it for several of his theorems

(c.f. Stigler (1974), Theorems 3 and 4). It should be noted that Stigler’s

statistic, defined by

s = 1 ,n n .  n+1 in1=1
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is somewhat different from our (1.3). Nevertheless, both converge to

JF
1(t)J(t)dt , and rough comparisons can be made. Basically, Stigler ’s

Theorems 2 and 5, which establish

S -E(S ) L(7.1) a(S ) —> N(0 ,l) as n -~ 0,

require a little less than our Theorems 4 and 6. However, for practical use,

(7.1) is needed with E(S~) replaced by fF
4(t)J(t)dt and a(S~) replaced by

a defined by (4.6). To accomplish this, Stigler requires stronger assumptions

on 3 than our (4.1) (see Theorem 4, Stigler (1974)). On the other hand, the

tail condition (5.2) is not quite as mild as f[(F(x))(l-F(x))J~dx < ~~ , the one

given in Stigler ’s Theorem 4. Stigler extends to certain independent but

non-identically distributed variables, whereas we can extend to identically

distributed but dependent variables. Of course, our method also establishes

strong consistency and an LIL without additional assumptions.

The results of Gregory (1976), like ours, are obtained by differential

methods. He proves Theorem 4* for J bounded and continuous and F absolutely

continuous. It appears that his use of the chain rules associated with

formal Frechet differentiation requires 3 to be continuous everywhere. This

indicates the power of our more flexible version of the differential approach.

Weakening of the absolutely continuous assumption on F could he made via our

Lemma 8. Also , his special q function yields a little sharper asymptotic

normality result, though it doesn ’t appear to belong to Q3 or Q5.

Wellner (1977a), (1977b) provides somewhat more general results for

strong consistency and the LI L.  In particular , his LIL is of the Strassen

type and allows combinations of quantiles as we l l .



We see that Theorems 4-7 provide improved results with regard to asymptotic

normality of L-statistics and additional results for strong consistency and

the LIL. Furthermore, applications to different situations involving depen-

dence are straightforward as the relevant theory concerning I IF~-FI becomes

available.
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‘- closely related statistic Sn = 

~~=1~in
>
~in ’ 

obtained under stronger conditions on J

but a slig htly milder condition on F.  However , in add it ion to asymptotic norma l ity

of 1(F ). the differential approach of the present paper yields characterization of

the almost sure behavior of T(F~ ) and lends itself to straightforward extension to

the case of dependent variables.
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